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Chapter 1 

Introduction 
 

1.1 Acute aquatic toxicity 

 

Chemical substances can easily enter the environment via different routes, such as 
wastewaters and gas emissions in the air. The environmental fate of a substance is 
typically a function of its physical-chemical properties, such as LogKow, LogKoc and 
Henry’s law constant. Depending on the environmental compartment(s) the substance 
is transported to, the ecotoxicological effects caused by the substance itself can be 
different. 

Many chemicals eventually partition in water and can exert adverse effects on aquatic 
systems. Chemical substances that are toxic to aquatic organisms can cause serious 
damages not only to aquatic species themselves, but can also disrupt aquatic food 
webs and threaten the survival of other parts of these systems, such as birds and 
mammals[1]. In fact, since aquatic species comprise the components of food chains that 
lead eventually to man, the survival of terrestrial species is partially dependent upon 
aquatic organisms.  

Lethality in aquatic organisms can be induced by means of both non-specific and 
specific mechanisms of reaction. Non-specific lethality, known as narcosis, is exerted 
by the majority of chemicals that are toxic to aquatic organisms. This type of lethality 
does not involve reactions with cellular macromolecules and occurs when the 
concentration of the chemical within a cell or in cellular membranes is high enough to 
cause non-specific perturbations in cellular function. Therefore, the ability of chemicals 
to diffuse across cellular membranes is the driving force to narcosis. Since cellular 
membranes are constituted by a lipid bilayer (Figure 1), they are more easily crossed 
by non-polar molecules. The relative toxic potency of non-polar substances that induce 
lethality by a narcosis mechanism is, thus, a function of their lipophilicity. Narcosis 
toxicity represents the baseline or minimum toxicity. 

Some chemicals present an excess toxicity (compared to the baseline set by narcosis) 
which is due to the occurrence of specific reactions. These reactions usually take place 
between the toxicant (or its metabolites) and critical cellular macromolecules. An 
example is represented by reactions that lead to the formation of covalent bonds 
between the toxicant and enzymes. 

 

Figure 1: cellular lipid bilayer. 
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The assessment of aquatic toxicity of chemical substances is a primary aspect to be 
addressed to preserve not only the environment but also human health. Toxicity tests 
are typically divided in acute and chronic tests, according to the duration of the 
exposure to the toxicant the test organism is subject to. 

Acute toxicity testing is the estimation of the hazard potential of a substance by 
determining its systemic toxicity in a test system, following a short-term exposure[7]. 
The test organism is subject to a single exposure or multiple events over a short period 
of time (hours or days). High doses of the toxicant, able to produce immediate effects 
are used[8]. These tests measure endpoints such as survival (or mortality), growth, 
reproduction, that are measured at each concentration in a gradient, along with a 
control test[6]. The assessment has traditionally been based on the median effective 
concentration (EC50), or lethal concentration (LC50) that has effect (or kills) 50% of 
test animals. Acute tests are not valid if mortality in the control sample is greater than 
10%. 

Chronic tests are long-term tests (weeks, months, years) relative to the test organism’s 
life span. The test animals are subject to low, continuous doses of a toxicant. Chronic 
exposures may induce acute-like effects, but can also result in effects that develop 
slowly. These tests allow to evaluate the highest concentration that produced no 
observable effects (No Observed Effect Concentration, NOEC) and the lowest 
concentration that caused observable effects (Lowest Observed Effect Concentration, 
LOEC). Chronic tests are not considered valid if mortality in the control sample is 
greater than 20%. 

There are different types of toxicity tests that can be performed on various test 
species. Different species differ in their susceptibility to chemicals, most likely due to 
differences in accessibility, metabolic rate, excretion rate, genetic factors, dietary 
factors, age, sex, health and stress level. Common standard test species are the 
fathead minnow (Pimephales promelas) and daphnids (Daphnia magna, Daphnia 
pulex, Daphnia pulicaria, Ceriodaphnia dubia)[8]. 

 

1.2 REACH requirements and QSAR 

 

REACH (Registration, Evaluation, Authorization and Restriction of CHemicals) is a 
regulation of the European Union, adopted to improve the protection of human health 
and the environment from the risks that can be posed by chemicals, while enhancing 
the competitiveness of the EU chemical industry. REACH requires a huge amount of 
toxicological and ecotoxicological data for all chemicals manufactured and/or traded 
inside the European Community above 1 tonne/year. 

In order to have a complete ecotoxicological profile of the substances subject to 
registration, REACH requires information on acute aquatic toxicity. Annex VII of the 
regulation, dealing with substances imported or manufactured above 1 tonne/year, 
states that the registrant must provide information on short-term, i.e. acute, aquatic 
toxicity to invertebrates, Daphnia magna being the preferred species.  
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In Annex VIII of REACH, which regards substances in the bandwidth 10-100 
tonnes/year, the requirements for short-term aquatic toxicity on fish are reported.  

In order to avoid unnecessary animal testing, according to the credo of the Three "R" 
(Replace, Reduce and Refine[2]) REACH promotes  the adoption of alternative test 
methods, including in-vitro and computer based (also known as in-silico) methods[2]. 
Alternative test methods can be used both as key-studies, as well as in a weight of the 
evidence approach, i.e. as supporting information. Several guidelines have been 
released by the European Chemicals Agency (ECHA) to help companies adopt these 
methods. In particular Chapter R.6 of the “Guidance on information requirements and 
chemical safety assessment” document deals with QSAR methods and how to use 
them in compliance with REACH requirements[3]. 

According to the OECD principles, QSAR models can be applied in the framework of 
REACH if the following four conditions are met: 

 results are derived from a (Q)SAR model whose scientific validity has been 
established; 

 the substance falls within the applicability domain of the (Q)SAR model; 

 results are adequate for the purpose of classification and labelling and/or risk 
assessment; 

 adequate and reliable documentation of the applied method is provided. 
 

 

1.3 Objectives 

 

On the basis of the aforementioned importance of assessing the aquatic toxicity of 
chemical substances and the information requirements demanded by REACH, this 
project aims at developing mathematical models for acute aquatic toxicity on Daphnia 
magna and fish using QSAR methods. A workflow of the QSAR strategy is reported in 
Figure 2. 

 

Figure 2: workflow of the strategy adopted to develop QSAR models. 
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The selected endpoint for both organisms is the LC50, i.e. the concentration of 
chemical that leads to the death of 50% of test organisms. A typical concentration-
response curve is reported in Figure 3. 
 

 
 

Figure 3: example of concentration-response curve showing the calculation of  LC50.   
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Chapter 2 

Methods 
 

2.1 QSAR background 

 

QSAR is the acronym for Quantitative Structure-Activity Relationship. QSAR analysis is 
based on the theory, according to which, biological activity, or a property (in this case 
referred to as QSPR), is directly related to molecular structure. According to the 
congenericity principle, molecules that feature similar structures will possess similar 
activities/properties, and changes in the structure are expressed by changes in 
activities/properties. 

QSAR analysis implies: 

 computational methods to calculate molecular descriptors; 

 procedures to select relevant molecular descriptors; 

 algorithms for model building. 

 

2.2 Molecular descriptors 
 

“The molecular descriptor is the final result of a logic and mathematical procedure 
which transforms chemical information encoded within a symbolic representation of a 
molecule into a useful number or the result of standardized experiment” [9]. The term 
“useful” has a double meaning: on one hand, it suggests that the number can allow to 
reach a deeper knowledge in the interpretation of molecular properties; on the other 
hand, this number can take part in determining a model to predict molecular 
properties. In fact, a molecular descriptor can be closely correlated to some molecular 
properties to give highly predictive models, even if its interpretation may be, 
sometimes, difficult. 

The information content of a molecular descriptor depends not only the type of 
chemical representation from which it is calculated, but also on the algorithm defined 
for its calculation. 

Descriptors are divided into two main categories: experimental measurements and 
theoretical molecular descriptors that derive from a symbolic representation of the 
molecule and can be further classified along with the different types of molecular 
representation. The most striking difference between theoretical and experimentally 
measured descriptors is that the former ones do not contain any statistical error due 
to experimental error. 

A molecular descriptor must fulfil some mathematical requirements. In particular, 
basic properties that every descriptor must possess, are: 

 invariance to atomic labelling and numeration; 
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 invariance to roto-translation of the molecule; 

 an unambiguous definition, computable by means of algorithms; 

 values in a suitable numeric interval for the set of molecules to which it is 
applicable. 

Currently thousands of descriptors have been defined and they can be calculated by 
means of dedicated software. Each descriptor describes only a part of the whole 
chemical information included in the real molecule and, consequently, the high 
number of descriptors is increasing on and on with increasing the complexity of the 
analyzed chemical systems and properties. 

 

2.3 Multiple Linear Regression (MLR) : OLS and PLS methods 
 

Regression is a mathematical method able to search for the best quantitative 
functional relationship between a set of variables, xi, that describe the objects under 
analysis, and a set of measured responses, yi, for the objects themselves[10][11]: 

                 

The resulting relationship provides information on how variables describing the system 
are related to the experimental measurement (fitting). Moreover, if the model is able 
to pass some statistical validation tests, it can be used for the prediction of responses 
of objects, for which only the independent variables are known. Regression is, 
therefore, structured in three main steps: 

 definition of the model type; 

 determination of model parameters; 

 evaluation of model reliability. 

Ordinary Least Squares (OLS) method provides a mathematical linear relationship 
between the y response and the independent variables xi, expressed as: 

        

where β is the vector of the true coefficients to be estimated, Xm is the model matrix 
and e is the vector of the errors. A regression model can be developed in the form: 

                               

where yi is the response of the i-th object and xij is the value of the j-th variable for the 
i-th object. The regression model is therefore defined by the following equation: 

          

where ŷ is the vector of the responses calculated by the model. 

Partial Least Squares (PLS) method is a biased regression method useful both when the 
ratio objects/variables is low (lower than 1), when variables correlated to each other 
are present and when dealing with several responses at the same time.  
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Basically, PLS method searches for pairs of principal components (latent variables) in 
Xm and Y (when Y contains more than one response) and searches for the maximum 
correlation between the principal components [12]. Each principal component is a linear 
combination of the original variables. Instead of solving the general form for any linear 
model for b: 

      

the following equation can be solved for q: 

          

where V is the loadings matrix.  

Once the regression model has been obtained, some statistical tests to evaluate its 
reliability are required. Important parameters, for model quality evaluation, are: 

Coefficient of determination (R2): 

       
   

   
 

where RSS is the sum of the residuals of the model and TSS a quantity referred to the 
average of the response, assumed as reference situation. R2 expresses the correlation 
between experimental response and independent variables, represents the variance 
explained by the model and measures what is normally defined as fitting.  

In order to have parameters that measure the predictive ability of a model, it is 
necessary to use validation and/or cross-validation techniques. There exist several 
validation methods, whose goal is to search for the optimal complexity of the model, 
i.e. the structure that maximizes its predictive power[10]. 

The general adopted scheme consists in splitting data into a training set, used to build 
one or more partial models, and an evaluation set, used to evaluate the model 
predictive power. These validation techniques differ in the way objects are split. For 
the purposes of this study, a 5-fold cross-validation was used.  

The application of validation techniques makes it possible to calculate parameters to 
estimate the predictive power of the model. If, in the expression for the coefficient of 
determination (R2), RSS is replaced with PRESS, i.e. sum of the residual of the model in 
prediction, one obtains the explained variance in prediction (Q2): 

      
     

   
 

Q2 value, unlike R2, does not keep on increasing while increasing the number of 
variables included in the model (increase of complexity). Thus, the maximum value 
assumed by this parameter corresponds to the optimal model complexity. 

In addition, two parameters, associated to RSS and PRESS, respectively, are: 

Root Mean Squared Error in Calculation (RMSEC):  
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Root Mean Squared Error in Prediction (RMSEP):  

        
     

 
 

These two parameters measure the standard deviation of the error in fitting (RMSEC) 
and in prediction (RMSEP), respectively, and have the advantage of being 
dimensionally comparable to the studied response. 

 

2.4 Artificial Neural Networks (ANN) and Associative Neural Networks (ASNN) 
 
Artificial Neural Networks (ANNs) are computational models inspired from the brain. In 
most cases an ANN is an adaptive system that changes its structure based on external 
or internal information that flows through the network during the learning phase. 
ANNs can learn and generalize from experiences, and they can abstract essential 
information from data [13].  

Based on the learning algorithm, neural networks can be classified into three major 
categories as follows: 

 in supervised learning, pairs of input and target vectors are required to train 
networks, so that appropriate outputs that correspond to input signals are 
generated accordingly. When an input vector is applied, the error between the 
output of the neural network and its target output is calculated, which is used to 
tune weights in order to minimize the error. 

 Unsupervised learning does not require target vectors for the outputs. Without 
input–output training pairs as external teachers, unsupervised learning is self-
organized to produce consistent output vectors by modifying weights.  

 Some neural networks employ hybrid learning. For example, counter-propagation 
networks and RBF networks use both supervised (at the output layer) and 
unsupervised learning (at the hidden layer). 

Typically neural networks have a three-layer architecture that comprises a layer of 
input neurons connected to a layer of hidden neurons, which in turn are connected to 
an output layer (Figure 4). 

Being a machine-learning method, neural networks need to be trained on the training 
data in order to define the vectors of the weights. This is typically accomplished by 
presenting the data to the network several times, in an iterative fashion, and allowing 
the network to learn from the data and set the weights. In case of supervised learning, 
the criterion that drives the setting of the weights is the minimization of the error at 
the output layer. 
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Figure 4[6]: architecture of a three-layer neural network. 

An associative neural network (ASNN) is a combination of an ensemble of the feed-
forward neural networks and the K-nearest neighbor technique[14]. ASNN, thus, 
combine a memory-less approach, provided by ANNs (after training is complete all 
information about the input patterns is stored in the neural network weights and input 
data are no longer needed), and methods such as the K-Nearest Neighbors (K-NN) that 
represent the memory-based approaches. These approaches keep in memory the 
entire database of examples and their predictions are based on some local 
approximation of the stored examples.  

ASNN have been proposed with the aim of reducing the high bias that can be 
associated to certain regions of the space. In order to improve the performance of a 
neural network in such regions of the space, the ensemble predictions     are corrected 
according to the following formula: 

          
 

 
          

       

 

where yi are the experimental values, Nk(x) is the collection of the k nearest 
neighbours of x among the input vectors in the training set {xi}

N
i=1 determined using 

Spearman non-parametric rank correlation coefficient rij. 

 

2.5 K-Nearest Neighbours (K-NN) 
 
K-NN is a non-parametric method based on the concept of similarity. The predicted 
value for any new object is computed from the values of its k nearest neighbours. K-
NN method does not provide a global mathematical model, i.e. a function to be 
applied to unknown objects, rather it is a local approach. Typically, the formula 
adopted for quantitative responses is in the form: 

     
 

 
      

       

 

where y(k) is the predicted value for x, Nk(x) is the collection of the k nearest 
neighbours of x among the input vectors in the training set {xi}

N
i=1 using Euclidean 

distance and y(xj) are the experimental values of the k neighbours. 

 

http://en.wikipedia.org/wiki/File:Artificial_neural_network.svg
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2.6 Support Vector Machines (SVM) 
 
Support Vector Machines are a set of supervised learning methods used in 
classification and regression analysis. In its original definition a SVM is a binary 
classifier that is able to recognize the border between objects belonging to two 
different classes. As well as ANN, given a set of training data, defined by independent 
and dependent variables, an SVM tries to derive a mathematical function to correctly 
classify (qualitative response) or calculate (quantitative response) the dependent 
variable, in such a way to minimize the bias. Once the SVM has been trained, new 
objects can be given as input and the output is the membership to a particular class, or 
a numerical value for a continuous variable. 
The basic functioning of SVM consists in a projection of the objects in a 
multidimensional space and a search for the separation hyper plane in this space. The 
separation hyper plane maximizes the distance between the two classes, considering 
the closest objects. 

The initial d-dimensional space Rd is transformed into a   -dimensional space (where  

    , d<∞ and the transformation can be both linear or not linear) and in this new 
space a quadratic problem subject to some constraints is faced. 
From a theoretical point of view[15], let’s start considering the training set defined as: 
 

                       

 

where X represents the space of input patterns Rd, x the input vector and y the target 
vector. The regression with ϵ-SV consists in finding the function f(x) which is as “flat” as 
possible and whose maximum distance from the target patterns yi belonging to the 
entire training set is less than or equal to ϵ. This means that a criterion on acceptability 
or tolerance of the error is defined. Figure 5 provides a depiction of what 
aforementioned, in which the points outside the dark region contribute to the cost-
function, since the error is higher than ϵ. 

Figure 5[58]: cost function.  
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Chapter 3  

Data 
 

Four databases were identified as sources of experimental data and are briefly 
described and referenced below. 

ECOTOXicology database (ECOTOX): the ECOTOXicology database is a source for 
locating single chemical toxicity data for aquatic life, terrestrial plants and wildlife. 
ECOTOX was created and is maintained by the U.S.-EPA, Office of Research and 
Development (ORD), and the National Health and Environmental Effects Research 
Laboratory (NHEERL)[16]. 

ECETOC: the ECETOC Aquatic Toxicity (EAT) database has been updated, mainly 
from data published between 1992 and 2000, to include information on the toxicity of 
substances to aquatic species in fresh and saline waters. It was created by the 
European Centre for Ecotoxicology and Toxicology of Chemicals[17]. 

 
OASIS: the OASIS database contains measured data for aquatic species. 

Experimental results for aquatic toxicity are developed and donated by the Laboratory 
of Mathematical Chemistry, Bulgaria, U.S.-EPA, University of Knoxville, Tennessee and 
MITI Japan[18]. This database was downloaded from the QSAR Toolbox[19] version 2.3. 

 
Aquatic Japan MoE: this database contains experimental results on aquatic 

toxicity based on tests performed within the Japanese Existing Chemicals Programme. 
The results are also published in the Japanese Chemical Risk Information Platform 
(CHRIP)[20]. This database was downloaded from the QSAR Toolbox[19] version 2.3. 
 
The downloaded databases were processed by means of ad-hoc designed workflows of 
KNIME[21] for each database. The workflows were designed in order to retain only 
information defining relevant experimental conditions, such as test species, duration, 
temperature and pH (where available). Moreover, the web service to ChemSpider[22] 
was used to retrieve the SMILES of every compound. The queries were performed 
giving both CAS registry numbers and names as input. In case the results did not 
match, a comment to warn the user of this situation was added. 

Data were uploaded on the OCHEM platform[4] and made publicly available. Since the 
upload procedure is highly automated, not only values of LC50 were uploaded, but also 
of other short-term and long-term properties. Table 1 summarizes the uploaded data. 

The design of the KNIME workflow and the upload on OCHEM of the ECOTOX database 
was performed by Kamel Mansouri. 
 
Table 1: Number of data uploaded on OCHEM for each source database. 

 EC50 LC50 NOEC LOEC 

ECETOC 4342 3167 816 827 
OASIS 265 2180 - - 
Japan MoE 1230 370 1156 29 
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The actual number of records for each property in the source databases is slightly 
higher than the number of records uploaded on OCHEM, the reason being an 
automatic check for internal and external duplicates performed by OCHEM during the 
upload steps.  
 
In the ECETOC database the concentration of chemical resulting in the death of 50% of test 
organism (LC50) is reported as EC50 with mortality as observed effect. These data have been 
re-uploaded on OCHEM as LC50 values in order to combine them with data from other 
sources. 

 
Before uploading the data, more than 400 scientific publications, referenced in the 
databases, were retrieved and uploaded on OCHEM. This allowed most of the data to 
be linked to the original study where they were published. The availability of the 
original articles is useful since it allows to check the values used to compile the 
databases for input errors. 
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Chapter 4  

Results and discussion 
 

4.1 Preparation of data on Daphnia magna 
 
As aforementioned, the endpoint considered in this study is the LC50. In order to have 
consistent data for modelling, it is important to define the test organism and the test 
duration. For Daphnia magna the chosen duration was 48 hours, according to the most 
commonly used experimental condition. The dataset for LC50 on Daphnia magna with 
a test duration of 48 hours consists in 1459 records, comprising 536 unique molecules. 
This means that for some compounds more than one experimental value was 
available. This dataset contains also 29 records previously uploaded on OCHEM by 
other users. 

A filtering stage was then applied to this set in order to have a more robust set for 
modelling. For 62 records no structure was provided during the upload and no 
matching structure was retrieved from PubChem[23] by OCHEM. These records were 
excluded from the set. 

Afterwards, the application of a set of structural alerts on OCHEM provided insight into 
the composition of the dataset, which is reported in Table 2. 

Table 2: composition of the dataset on Daphnia magna. 

Organic 
chemistry 
molecules1 

Non-organic 
chemistry 
molecules 

Perfluoroalkylated 
compounds (PFCs) 

Metals Molecules not 
supported in ALOGPS 

program 

452 84 5 75 85 

1 Molecules including H, C, N, O, S, P, Si, F, Cl, Br and I atoms. 
 

Only compounds including atoms typical of organic chemistry were retained at this 
stage. Also NH3, NH4

+Cl-, I2, Cl2 and Br2, and were removed. 

Since there was not enough time to manually check all the experimental values, it was 
decided to develop a preliminary model and check only outliers, both in the prediction 
and in the descriptors space. A useful feature of OCHEM is the possibility to 
automatically retrieve all the records for the same molecule. This allowed to identify 
some values which were wrongly input in the source database. If the value or the units 
in the original publication were different from those reported in the database, this 
information was corrected on OCHEM. 

Few other records were removed because of three distinct reasons: 

 the observed effect reported in the original publication was different than the one 
input in the database; 

 the molecule was not present in the original publication; 

 the values were expressed as higher than (> [i]). 
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Table 3 summarizes the number of removed and corrected values for the 
aforementioned reasons. 
 
Table 3: number of corrected and removed records because of errors in the source database. 

Not in reference Different observed 
effect 

Corrected Higher than (>[i]) 

12 5 7 5 

 

The refined dataset used for modelling contains 876 records for 435 unique 
compounds. 

 

4.2 QSAR analysis of toxicity on Daphnia magna 
 
The online platform OCHEM was used to carry out the QSAR analysis. The dataset 
includes few salts and disconnected structures. The approach implemented in OCHEM 
to treat these species implies that only the bigger substructure (on the basis of the 
atom count, hydrogen atoms ignored) is retained and used to calculate molecular 
descriptors. 

Initially all the records were considered for the modelling stage, meaning that some 
molecules were present in the dataset with more than one experimental value.  

The experimental response was transformed in logarithmic scale of molarity 
(Log(mol/L)) for the subsequent QSAR analysis. 

Different types of molecular descriptors implemented in OCHEM were calculated and 
used to derive QSAR models. In particular, the following descriptors were used: 

 CDK[24]; 

 DRAGON[25]; 

 ALogPS[26] and OEstate[27]; 

 ISIDA fragments[28]; 

 Mera and Mersy[29]; 

 ChemAxon descriptors[30]; 

 Inductive descriptors[31]; 

 Adriana[32]; 

 Spectrophores[33]; 

 Shape Signatures[34]; 

 QNPR[35]. 
 
A variable reduction step was carried out before the development of the models in 
order to reduce the number of analyzed molecular descriptors. This filtering procedure 
was based on 4 criteria, which are listed below: 

 absolute values: only descriptors with absolute values lower than 999999 were 
retained; 

 variance: descriptors with variance lower than 0.01 were excluded; 

 unique values: only descriptors with more than 2 unique values were retained; 
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 pairwise correlation: if the Pearson’s correlation coefficient was higher than 0.95, 
the descriptors were grouped. 

Several different methods (see Chapter 2) representing different approaches (linear 
regression, machine-learning, local approaches) were used to derive QSAR models on 
the OCHEM platform.  

The derived models were validated using a 5-fold cross-validation. As aforementioned, 
all the records were used. This fact should not affect the cross-validation since OCHEM 
splits the dataset into training and validation sets using the molecule ID rather than 
the record ID. This means that all the records of one molecule are assigned to the 
same set. This avoids the bias that can be originated if the same molecule is present in 
both sets. In this case the molecule being predicted to test the predictive power of the 
model, had already been used to train the model itself, leading to an overestimation of 
the predictive power. 

The results presented below refer to models develop using the aforementioned 
descriptors separately, because a combination of them did not produce any 
improvement in the results. Table 4, 5 and 6 report the R2, Q2 and RMSECV values, 
respectively, for the complete list of models obtained on the OCHEM platform using all 
records. Afterwards, the best model is analyzed more in details. 
 
Table 4: R2 of the models developed on OCHEM using all records.  

 ANN ASNN K-NN SVM FSMLR MLRA PLS 

CDK 0.62 0.65 0.54 0.58 0.53 0.43 0.18 
DRAGON 0.64 0.64 0.62 0.63 0.54 0.45 0.04 
ALogPS,OEstate 0.58 0.58 0.55 0.56 0.39 0.47 0.51 
ISIDA 0.56 0.56 0.49 0.49 0.33 0.37 0.47 
Mera, Mersy 0.59 0.62 0.55 0.59 0.48 0.53 0.13 
ChemAxon 0.62 0.63 0.47 0.61 0.46 0.51 0.56 
Inductive 0.57 0.60 0.49 0.54 0.06 0.34 0.39 
Adriana 0.61 0.62 0.50 0.39 0.40 0.34 0.00 
Spectrophores 0.45 0.49 0.47 0.53 0.16 0.19 0.23 
ShapeSignatures 0.21 0.27 0.59 0.47 0.25 0.41 0.39 
QNPR 0.52 0.52 0.43 0.44 0.44 0.43 0.48 

 
Table 5: Q2 of the models developed on OCHEM using all records. 

 ANN ASNN K-NN SVM FSMLR MLRA PLS 

CDK 0.62 0.63 0.52 0.57 0.49 0.38 -0.09 
DRAGON 0.64 0.64 0.60 0.61 0.49 0.44 -9.64 
ALogPS,OEstate 0.57 0.57 0.52 0.54 0.25 0.46 0.47 
ISIDA 0.56 0.56 0.48 0.45 0.25 0.29 0.44 
Mera, Mersy 0.59 0.61 0.54 0.59 0.45 0.52 -0.18 
ChemAxon 0.62 0.60 0.38 0.59 0.45 0.50 0.55 
Inductive 0.57 0.59 0.46 0.53 -1.97 0.31 0.37 
Adriana 0.61 0.62 0.46 0.28 0.35 0.20 -15.74 
Spectrophores 0.45 0.48 0.41 0.52 0.09 0.12 0.20 
ShapeSignatures -0.07 -0.05 0.58 0.46 -0.46 0.41 0.39 
QNPR 0.51 0.51 0.40 0.43 0.40 0.41 0.46 
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Table 6: RMSECV of the models developed on OCHEM using all records. 

 ANN ASNN K-NN SVM FSMLR MLRA PLS 

CDK 1.10 1.08 1.24 1.18 1.28 1.40 1.86 
DRAGON 1.06 1.06 1.12 1.10 1.26 1.33 5.78 
ALogPS,OEstate 1.17 1.17 1.23 1.21 1.54 1.31 1.29 
ISIDA 1.18 1.18 1.28 1.31 1.54 1.49 1.32 
Mera, Mersy 1.14 1.11 1.21 1.14 1.31 1.22 1.93 
ChemAxon 1.10 1.12 1.39 1.14 1.32 1.25 1.19 
Inductive 1.17 1.14 1.30 1.21 3.06 1.47 1.41 
Adriana 1.11 1.10 1.31 1.50 1.44 1.59 7.27 
Spectrophores 1.32 1.28 1.36 1.23 1.69 1.67 1.58 
ShapeSignatures 1.82 1.80 1.15 1.31 2.12 1.35 1.37 
QNPR 1.24 1.24 1.37 1.34 1.37 1.36 1.30 

 
These models indicate that the methods that give better results are ANN and ASNN; 
from the descriptors side, the best results are obtained with DRAGON descriptors, 
followed by CDK and ChemAxon descriptors. Since the aim is to develop predictive 
QSAR models, the model with highest Q2 was chosen as best.  

ANN and ASNN models on DRAGON descriptors gave the same results. For the sake of 
simplicity, the ANN model was considered for further analysis. 

ANN with DRAGON descriptors: the neural network was trained with 1000 
iterations, using the SuperSAB training method and 3 neurons in the hidden layer. The 
number of retained descriptors after the variable reduction step used to train the 
network was 1413. 

2 molecules comprising a total of 5 records were ignored during the development of 
the model because of failure during the optimization of the structure (1,2,3,4,5,6-
hexachlorocyclohexane, 3 records) or the calculation of the descriptors (fullerene, 2 
records). Thus, 871 records, comprising 434 unique compounds was used to develop 
the model. 

The plot of measured versus calculated values for LC50 is reported in Figure 6. 
 

 
 
Figure 6: calculated versus measured values for LC50 on Daphnia magna (48 hours) obtained 
with the ANN model. 
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The statistics for the model are provided in Tables 4, 5 and 6. 

Even though this is the best model developed, it can be seen that the statistics both for 
fitting and prediction are not very high. 

From the plot of calculated versus measured values, it is clear that the model does not 
perform well on certain molecules, for which the error in calculation is very high. 
Therefore, the model cannot be said to provide reliable predictions over the entire 
chemical space represented in the training set. In order to provide an estimation of the 
applicability domain of the model in terms of chemical space, the correlation between 
function groups and performance of the model was analyzed. 

The dataset was screened against the library of functional groups implemented on 
OCHEM ToxAlerts [Shusko Y. JCIM, in press] and published by Haider[36]. 87 functional 
groups were identified in the training set. Some analyses were carried out. First, the 
number of molecules featuring each functional group was calculated. This number was 
correlated with the RMSEC for each functional group. Figure 7 reports a bubble plot to 
highlight the correlation between number of molecules for each functional and the 
RMSEC. 

 

 
 
Figure 7: bubble plot of number of compounds for each functional group and RMSEC values. 
The size of the bubbles is proportional to the number of molecules. The x axis is an enumerator 
used to sort the bubbles in ascending order of the number of molecules. 

 

Some considerations can be drawn from the bubble plot. One can see that the RMSEC 
values for all the functional groups that are well represented in the dataset (on the 
right side of the plot) is approximately equal to or lower than the RMSEC on the entire 
dataset (1.06). These well represented functional groups include aromatic and 
heterocyclic compounds as well as halides. One can also see that all the functional 
groups possessing a very high RMSEC are not well represented in the dataset. The 
largest errors are made on derivatives of phosphoric and phosphonic acids. The RMSEC 
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on phosphonic acids (1.28) is, instead, only slightly larger than that on the entire 
dataset. Also carboxylic acid secondary amides are not well predicted (RMSEC =  2.06). 
3 more functional groups have a much larger RMSEC than that on the entire dataset, 
namely alkynes, aldehydes and oxohetarenes. This set of functional groups can be 
considered outside the applicability domain of the model and includes mainly 
derivatives of acidic functions. On one hand, as expected, all functional groups with 
very large RMSEC values are not well represented in the dataset; on the other hand, it 
is not true the opposite, i.e. that all functional groups not well represented are 
associated with a large RMSEC. In fact the predictions on thiols and thiocarboxylic 
amides is very good and the RMSEC values are much lower than the RMSEC on the 
entire dataset, 0.11 and 0.15 for thiols and thiocarboxylic amides, respectively. 
However, the molecule featuring the thiol and arylthiol structural alerts (Figure 8) is 
included also in the aromatic compounds, heterocyclic compounds, aromatic 
heterocyclic compounds, alcohols/phenols and phenols groups. These latter are well 
represented in the dataset and this fact can explain the good performance of the 
model on this molecule. On the contrary, the molecule featuring the thiocarboxylic 
acid derivative and thiocarboxylic acid amide structural alerts possesses no other 
functional groups. Therefore the good performance of the model cannot be explained 
in terms of other well represented functional groups within the molecule. However, it 
must be considered that for these functional groups only one or two molecules are 
present. Therefore, it is not possible to derive general conclusions. The good or poor 
performance of the model on these functional groups can be also imputed to chance. 

 

Figure 8: molecule with thiol moiety. 

Most of the molecules belonging to the 7 outlier functional groups include also well 
represented moieties, such as aromatic/heterocyclic rings and halides, but still the 
models’ performance is very poor. Table 7 reports structures, names and average LC50 
values for the 14 molecules belonging to the 7 groups outside the applicability domain. 
 
 
 
 
 
 
Table 7: structure, name and LC50 (in –Log(mol/L)) values of the 14 molecules possessing the 
functional groups outside the applicability domain of the model. 

acrolein 
 

 
 
LC50 = 5.94 

salicylaldehyde 

 
LC50 = 4.45 
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dimethylformamide 

 
LC50 = 0.70 

acetaldehyde 

 
LC50 = 0.55 

dimethoate 

 
LC50 = 5.00 

acetaminophen 

 
LC50 = 6.67 

ethopabate 

 
LC50 = 3.07 

propanil 

 
LC50 = 4.64 

hexazinone 
 

 
 
LC50 = 5.56 

halofuginone hydrobromide 

 
LC50 = 7.44 

hexamethylphosphoramide 

 
LC50 = 1.43 

trichlorfon 

 
LC50 = 7.70 

glyphosate 

 
 
 
LC50 = 3.91 

azafenidin 

 
LC50 = 3.95 

 

In order to analyze whether there is a mechanistic reason that can explain the poor 
performance of the model on the molecules belonging to the 7 outlier functional 
groups, these molecules were screened against the structural alerts for aquatic toxicity 
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of the Verhaar scheme[37] using the software ToxTree[38]. The results, reported in Table 
8, do not provide an insight into the reactivity of these molecules. In fact, it was not 
possible to classify most of the molecules. All aldehydes were classified as acting by 
non specific mechanisms, while only one carboxylic acid amide was identified as 
molecule acting through a specific mechanism. 
 
Table 8: screening of molecules belonging to the outlier functional groups using the Verhaar 
scheme. 

Molecule Functional group Classification 

acrolein aldehydes unspecific reactivity 
salicylaldehyde aldehydes unspecific reactivity 
N,N-dimethylformamide aldehydes unspecific reactivity 

acetaldehyde aldehydes unspecific reactivity 

dimethoate  carboxylic acid secondary amides specific reactivity 

acetaminophen  carboxylic acid secondary amides not classifiable  

ethopabate  carboxylic acid secondary amides not classifiable 

propanil  carboxylic acid secondary amides not classifiable 

hexazinone oxohetarenes not classifiable 

Halofuginone hydrobromide  oxohetarenes not classifiable 

hexamethylphosphoramide phosphoric acid amides not classifiable 

trichlorfon phosphonic acid derivatives, 

phosphonic acid esters 

not classifiable 

glyphosate phosphonic acid derivatives not classifiable 

azafenidin  alkynes not classifiable 

 

However, two considerations can be drawn. First, aldehydes are in general reactive 
species, thus they can undergo a number of reactions resulting in a toxic action that 
may deviate from that of narcotic toxicants. Secondly, all the other molecules (not 
belonging to the aldehydes class) are pesticides, herbicides, chemosterilant or 
analgesic substances. Therefore, they represent a peculiar class of compounds. For 
example, Kim et al.[39] report Daphnia magna to be particularly sensitive to certain 
drugs including acetaminophen (paracetamol), which in fact has a high toxicity. Some 
of these molecules, indeed, have high toxicity (acrolein, acetaminophen, halofuginone 
hydrobromide and trichlorfon) compared to the average of the dataset (4.76). On the 
contrary, 3 molecules have a very low toxicity, namely  acetaldehyde, 
dimethylformamide and hexamethylphosphoramide. The toxicity values of the 

remainders are close to the mean LC50. However, specific mechanisms of actions may be 
the cause of their deviation from the general behaviour. 

The second analysis that was carried out concerns the single molecules, instead of 
functional groups. In this case, the correlation between the number of functional 
groups possessed by each compound and the RMSEC for that compound was analyzed. 
Figure 9 reports a bar plot of the RMSEC values for each molecule. What emerges from 
this plot is that, in practice, there is no correlation between the number of functional 
groups within each molecule and the RMSEC. It was expected that the RMSEC values 
would increase together with an increasing number of functional groups per molecule. 
Unexpectedly, the molecules featuring the largest RMSEC values have only a moderate 
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number of moieties. However the bar plot of the average RMSEC values for each block 
(Figure 10) seems to show that the average RMSEC follows a parabolic trend, 
indicating that the error is smaller for molecules featuring 2 to 6 functional groups. 
This is reasonable because most of the molecules in the dataset have such number of 
functional groups. Molecules with just one or many moieties, instead are less frequent 
and had therefore less weight in the model calibration. Moreover, very complex 
molecules, as well as simple molecules with particular moieties, can show a different 
toxic behaviour and therefore the prediction of their toxic activity is more difficult. 
However, it must be kept in mind that for this analysis only the number of different 
functional groups within each molecule was considered, irrespective of the number of 
instances.  
A further analysis that could not be carried out for timing issues would be to analyze 
the correlation between the RMSEC of each molecule and the overall number of 
functional groups, which can be calculated as: 

         

 

   

 

where the sum runs over the number of functional groups, Tf is a binary variable that 
codes the presence/absence of a particular functional group and Nf is the number of 
instances of that functional group. 
 

 
 
Figure 9: bar plot of RMSEC values for each molecule. Colours indicate the number of functional 
groups per molecule according to the legend. 
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Figure 10: bar plot of the average RMSEC for each block of number of functional groups. The 
number of functional groups is indicated on top of the bars. 

Eventually, the correlation between the standard deviation of the experimental 
response within each functional group and the RMSEC for that functional group was 
studied. Figure 11 reports the RMSEC values versus the standard deviations for each 
functional group. It can be seen that there is no clear correlation (R2 = 0.05). This result 
was expected since the molecules possessing a common functional group can be very 
different in their structure and therefore possess also very different LC50 values. In 
this case the standard deviation is large, but this does not imply that the model should 
have poor performance on this subset of molecules. The lack of correlation is 
highlighted also by the previously identified 7 outlier functional groups. In fact, their 
RMSEC values are very high irrespective of their standard deviation, that ranges from 0 
for alkynes and phosphoric acid amides, to 2.62 for aldehydes. 

In the same way, also the correlation between RMSEC and standard deviation of the 
experimental response for each molecule was studied (Figure 12). Many molecules 
have only one experimental value, therefore the standard deviation associated with 
them is 0. The red line in the plot indicates a region in which it seems there is a certain 
degree of correlation: for the molecules lying along this line the RMSEC increases 
together with the standard deviation. This situation was expected, because if the 
standard deviation of the experimental values is high (very different experimental 
values), necessarily also the prediction error will be high. This is because the error in 
prediction cannot be lower than the deviation of the experimental values. 
However, there are many molecules that do not follow this trend, thus it is not 
possible to state that there is an overall correlation between RMSEC and standard 
deviation. 
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Figure 11: RMSEC values versus the standard deviation for each functional group. 

 

 
 

Figure 12: RMSEC versus standard deviation for each molecule. 
 

In addition to the previously presented models, developed using all the records for 
each molecule, another set of models was developed using only one experimental 
value for each molecule. Since there was no time to analyze all the experimental 
values and choose the most reliable, the retained measurement was randomly chosen 
using OCHEM. 

The response was transformed in logarithmic scale of molarity (Log(mol/L)) and the 
same methods and descriptors aforementioned were used. The statistics of the 
developed models are presented in Tables 9, 10 and 11. 
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Table 9: R2 of the models developed on OCHEM using only one record per molecule. 

 ANN ASNN K-NN SVM FSMLR MLRA PLS 

CDK 0.49 0.51 0.50 0.50 0.34 0.37 0.27 
DRAGON 0.54 0.54 0.51 0.53 0.36 0.36 0.10 
ALogPS,OEstate 0.51 0.51 0.48 0.45 0.40 0.14 0.48 
ISIDA 0.46 0.46 0.43 0.46 0.31 0.25 0.42 
Mera, Mersy 0.49 0.50 0.47 0.46 0.37 0.34 0.07 
ChemAxon 0.46 0.50 0.40 0.55 0.36 0.38 0.35 
Inductive 0.36 0.47 0.33 0.43 0.23 0.27 0.28 
Adriana 0.45 0.47 0.45 0.35 0.32 0.24 0.05 
Spectrophores 0.31 0.39 0.39 0.36 0.21 0.17 0.14 
ShapeSignatures 0.29 0.39 0.35 0.26 0.06 0.27 0.22 
QNPR 0.44 0.43 0.44 0.37 0.28 0.42 0.40 
 
Table 10: Q2 of the models developed on OCHEM using only one record per molecule. 

 ANN ASNN K-NN SVM FSMLR MLRA PLS 

CDK 0.49 0.48 0.48 0.49 0.22 0.35 0.26 
DRAGON 0.54 0.52 0.50 0.52 0.31 0.33 -0.33 
ALogPS,OEstate 0.51 0.51 0.46 0.44 0.39 -0.45 0.46 
ISIDA 0.46 0.46 0.41 0.46 0.14 0.10 0.41 
Mera, Mersy 0.49 0.50 0.47 0.45 0.35 0.32 -0.07 
ChemAxon 0.46 0.47 0.38 0.54 0.36 0.37 0.33 
Inductive 0.36 0.45 0.31 0.42 0.21 0.25 0.26 
Adriana 0.45 0.45 0.44 0.30 0.32 0.13 -1.04 
Spectrophores 0.31 0.36 0.39 0.35 0.15 0.10 0.08 
ShapeSignatures 0.29 0.37 0.34 0.24 -0.21 0.27 0.22 
QNPR 0.44 0.42 0.40 0.32 0.25 0.42 0.39 
 
Table 11: RMSEC of the models developed on OCHEM using only one record per molecule. 

 ANN ASNN K-NN SVM FSMLR MLRA PLS 

CDK 1.19 1.20 1.20 1.19 1.48 1.35 1.44 
DRAGON 1.12 1.14 1.17 1.14 1.37 1.36 1.91 
ALogPS,OEstate 1.16 1.16 1.22 1.24 1.29 1.99 1.21 
ISIDA 1.21 1.22 1.28 1.22 1.53 1.57 1.27 
Mera, Mersy 1.18 1.17 1.20 1.22 1.33 1.36 1.71 
ChemAxon 1.21 1.20 1.30 1.12 1.32 1.31 1.35 
Inductive 1.32 1.22 1.37 1.25 1.47 1.44 1.42 
Adriana 1.23 1.23 1.23 1.39 1.37 1.54 2.36 
Spectrophores 1.37 1.32 1.29 1.33 1.52 1.56 1.59 
ShapeSignatures 1.39 1.30 1.33 1.44 1.81 1.41 1.45 
QNPR 1.24 1.26 1.28 1.36 1.43 1.26 1.29 

 
The statistics of the models obtained using only one record for each molecule are 
slightly worse than those obtained on all available experimental values. This result is 
quite surprising since the presence of multiple values was expected to negatively affect 
the results, this being mainly due to large standard deviations of the experimental 
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response for some molecules. Some hypotheses can be raised to explain the worsening 
of the models on this dataset: 
1. prior published data provide a benchmark for new measurements. Thus, the 

availability of already existing measurements can help in the detection of errors 
during the measurement itself. The reference provided by prior data generates a 
process that can lead to good quality data. On the contrary, errors present in 
measurements taken for the first time are harder to detect and these data may be 
regarded as reliable. 

2. Important molecules were present with several experimental values. When 
developing models using all the records, these molecules acquired increased weight 
and helped in the definition of some crucial features. 

3. somehow the cross-validation step introduces a bias when using multiple values for 
one molecule. The splitting in training and validation sets is done in such a way that 
all the records (experimental values) of one molecule are assigned to the same set. 
This avoids that one molecule is used to build the model but also to test its 
predictive power, leading to an overestimation of the predictive ability of the 
model. However, if the same molecule was provided in different forms, e.g. 
tautomers or mesomeric forms (Figure 8), these are recognized as being different 
molecules (the values of some descriptors are different) and thus they may be 
assigned to both training and validation set. 
 

Figure 13 reports the number of molecules for each number of replicates (multiple 
values). It is clear that most of the molecules have only one experimental value, but 
there is still a quite large number of molecules with 2 (92), 3 (36) and 4 (23) records. 
The percentage of molecules with multiple records is 41%. 

 

Figure 13: number of molecules for each number of replicates (multiple records). 

The best result was obtained with a Support Vector Machine using ChemAxon 
descriptors (R2=0.55, Q2=0.54), followed by an Artificial Neural Network using DRAGON 
descriptors R2=0.54, Q2=0.54). Since these models are worse than the previous ones, 
only the SVM model is briefly commented below.  
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SVM with ChemAxon descriptors: the SVM was run using a Radial Basis Function 
kernel. The number of retained descriptors after the variable reduction step was 83. 

3 molecules were ignored during the development of the model because of failure 
during the optimization of the structure (1,2,3,4,5,6-hexachlorocyclohexane) or the 
calculation of the descriptors (fullerene and acenaphthene).  

The plot of calculated versus measured values for LC50 is reported in Figure 14. 
 

 
 

Figure 14: calculated versus measured values for LC50 on Daphnia magna (48 hours) obtained 
with the SVM model. 
 

The evaluation of the AD in terms of functional groups was undertaken in the same 
fashion as for the previous model. Figure 15 reports a bubble plot for the RMSEC 
versus the number of compounds for each functional group. Also for this model, the 
functional groups that are well represented in the training set have RMSEC values 
lower or equal to the RMSEC of the model on the entire dataset (1.12). These 
functional groups include aromatic compounds as well as heterocyclic compounds and 
halides. Large RMSEC values are associated with poorly represented functional groups. 
Some of these are the same as those of the ANN on DRAGON descriptors, namely 
aldehydes and oxohetarenes, while other functional groups outside the AD are 
different, i.e. thiols, tertiary aliphatic amines, phosphoric acid esters and derivatives. It 
is interesting to note that thiols and arylthiols were very well predicted by the previous 
model while they are outside the AD of the present model. This fact supports what 
aforementioned, that is that the good or poor performance of the model on functional 
groups possessed only by one or two molecules can be due to chance and general 
conclusions may be misleading. Differently, thiocarboxylic acid amides are well 
predicted by both models nevertheless only few molecules possess this moiety. 

A bar plot of RMSEC versus number of functional groups for each molecule is reported 
in Figure 16. Also in this case there is no clear correlation between the number of 
functional groups and the RMSEC value for each molecule. Still, it must be kept in mind 
that only the number of different functional groups was considered, regardless of the 
number of instances. 
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Figure 15: bubble plot of number of compounds for each functional group and RMSEC values. 
The size of the bubbles is proportional to the number of molecules. The x axis is an enumerator 
used to sort the bubbles in ascending order of the number of molecules. 

 
 

 
 

Figure 16: bar plot of RMSEC values for each molecule. Colours indicate the number of 
functional groups per molecule according to the legend. 

The statistics show that the predictive power of the developed models is not very high. 
These models were compared with those implemented in the software T.E.S.T.[40] of 
the U.S.-EPA. For the development of the models, the authors used data taken from 
the ECOTOX database; the database was filtered in order to retain only measurements 
taken under similar experimental conditions and the median value for each substance 
was used. The final dataset comprised 337 molecules. Different methods were used to 
develop the models, which were validated using an external set of 68 compounds. The 
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performance on the external set for the various approaches are reported in Table 12 
along with the statistics of the two best models developed with OCHEM.. 
 
Table 12: statistics of the models implemented in T.E.S.T. and the two best developed models 
using all records and only one record. 

Model Q2ext RMSEP 

Single model 0.51 1.09 
Consensus 0.56 1.09 
FDA 0.57 0.94 
Nearest neighbour 0.57 1.10 
Hierarchical 0.66 0.90 
ANN DRAGON 0.64 1.06 
SVM ChemAxon 0.54 1.12 

 
It can be seen that also the predictive power of the models implemented in T.E.S.T. is 
poor. This leads to the conclusion that the LC50 on Daphnia magna is a difficult 
endpoint to model. The best model developed on OCHEM using all the available 
records seem to be better than the T.E.S.T. models, with the exclusion of the 
hierarchical model. The SVM with ChemAxon descriptors obtained using only one 
record for each molecule has slightly lower performance of almost all the T.E.S.T. 
models, but the single model. A further filtering of the experimental data, combined 
with the use of some average value or a non-random selection of the measurement to 
retain and the development of consensus models may lead to a further improvement 
of the present models using only one record. 

 

4.3 Preparation of data on fish 
 
The dataset for LC50 on fish was prepared in the same fashion as that for Daphnia 
magna. Only one species, namely Pimephales promelas (Fathead minnow), and one 
test duration (96 hours) were considered .  

After removing 99 records for which no structure was available, the initial dataset 
consisted in 3359 records comprising 1048 unique compounds. Thus, also for this 
property some molecules have more than one experimental value associated. This 
dataset contains also 919 records previously uploaded on OCHEM by other users. 

The same filtering procedure based on structural alerts was applied. The distribution of 
the initial dataset over the 5 classes is reported in Table 13. Still, only compounds 
including atoms of organic chemistry were retained. As in the case of Daphnia magna, 
some other compounds and mixtures were also removed, namely NH3, HClO2, NH4

+ Cl-, 
HS, N2, [NH4

+]4 [HPO4
2-] [SO4

2-] and [NH4
+]2 [SO4

2-]. The filtered dataset consists in 2592 
records for 949 unique chemical compounds. 
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Table 13: composition of the dataset on Pimephales promelas. 

Organic 
chemistry 
molecules1 

Non-organic 
chemistry 
molecules 

Perfluoroalkylated 
compounds (PFCs) 

Metals Molecules not 
supported in ALOGPS 

program 

958 90 3 86 91 

1 Molecules including H, C, N, O, S, P, Si, F, Cl, Br and I atoms. 
 

Due to lack of time, a preliminary model was developed in order to highlight the 
presence of outliers possibly due to errors in the databases. This step allowed to 
identify some errors and few outliers. The detected errors were of different type, 
namely: 

 the molecule was not present in the original publication; 

 the experimental values in the original publication referred to mixtures of 
compounds but were input in the database as referred to a single chemical; 

 the values in the original publications were expressed as intervals (< [i] >) or as 
higher than (> [i]) but were uploaded as single value; 

 the values in the database were different from those reported in the original 
publication; 

 one value (or few values) was highly deviating from the average of the other values 
for the same molecule. Different test conditions, not reported in the database, may 
be the cause for these differences; 

 2 molecules with values highly deviating from the trend of all other compounds 
were considered as outliers and removed.  

Table 14 summarizes the number of removed records  for the aforementioned 
reasons. 

The refined dataset used for modelling contains 2537 records for 927 unique 
compounds. 

 
Table 14: number of removed records. 

Not in 
reference 

Mixture Intervals Different 
values 

Records highly 
deviating 

Outliers (molecules 
highly deviating) 

9 5 18 5 3 16 

 

 

4.4 QSAR analysis of toxicity on fish 
 
The online platform OCHEM was used to carry out the QSAR analysis. The same 
approach used to model short-term toxicity on Daphnia magna was applied.  

Initially all the records were considered for the modelling stage and the response was 
transformed in logarithmic scale of molarity (Log(mol/L)). The descriptors and methods 
used to model the LC50 on Daphnia magna were also used for the QSAR analysis of 
short-term toxicity on Pimephales promelas. 
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A variable reduction step was carried out before the development of the models. This 
procedure was based on absolute values, variance, unique values and pairwise 
correlation as previously described. The derived models were validated using a 5-fold 
cross-validation. 

Table 15, 16 and 17 report the R2, Q2 and RMSECV values, respectively, for the 
complete list of models obtained on the OCHEM platform using all records. 
Afterwards, the best model is analyzed more in details. 

These models indicate that machine-learning methods (ANN, ASNN and SVM) provide 
the best results; from the descriptors side, the best results are obtained with DRAGON 
descriptors, followed by CDK and ChemAxon descriptors. Since the aim is to develop 
predictive QSAR models, the model with highest Q2 was chosen as best.  

Table 15: R2 of the models developed on OCHEM using all records. 

 ANN ASNN K-NN SVM FSMLR MLRA PLS 

CDK 0.73 0.72 0.66 0.74 0.20 0.56 0.62 
DRAGON 0.74 0.74 0.61 0.77 0.58 0.57 0.56 
ALogPS,OEstate 0.71 0.71 0.52 0.68 0.66 0.67 0.68 
ISIDA 0.67 0.67 0.50 0.63 0.61 0.53 0.63 
Mera, Mersy 0.70 0.71 0.54 0.72 0.36 0.52 0.44 
ChemAxon 0.73 0.75 0.54 0.69 0.59 0.57 0.60 
Inductive 0.66 0.68 0.49 0.63 0.26 0.50 0.57 
Adriana 0.66 0.67 0.55 0.56 0.58 0.57 0.48 
Spectrophores 0.51 0.49 0.33 0.49 0.30 0.35 0.35 
ShapeSignatures 0.62 0.61 0.40 0.59 0.02 0.42 0.49 
QNPR 0.66 0.67 0.57 0.61 0.56 0.52 0.60 
 

Table 16: Q2 of the models developed on OCHEM using all records. 

 ANN ASNN K-NN SVM FSMLR MLRA PLS 

CDK 0.73 0.72 0.63 0.73 -1.05 0.56 0.61 
DRAGON 0.74 0.74 0.58 0.76 0.53 0.56 0.51 
ALogPS,OEstate 0.70 0.70 0.49 0.66 0.65 0.66 0.67 
ISIDA 0.65 0.65 0.46 0.61 0.60 0.53 0.62 
Mera, Mersy 0.70 0.70 0.48 0.72 0.15 0.49 0.43 
ChemAxon 0.73 0.74 0.48 0.68 0.47 0.57 0.59 
Inductive 0.66 0.68 0.40 0.62 -0.97 0.49 0.57 
Adriana 0.66 0.67 0.53 0.53 0.57 0.57 0.46 
Spectrophores 0.51 0.46 0.18 0.47 0.24 0.34 0.34 
ShapeSignatures 0.62 0.60 0.28 0.58 -6.83 0.40 0.49 
QNPR 0.66 0.67 0.55 0.59 0.56 0.51 0.59 
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Table 17: RMSEC of the models developed on OCHEM using all records. 

 ANN ASNN K-NN SVM FSMLR MLRA PLS 

CDK 0.77 0.79 0.90 0.76 2.12 0.99 0.93 
DRAGON 0.76 0.76 0.97 0.72 1.03 0.99 1.05 
ALogPS,OEstate 0.81 0.81 1.07 0.87 0.89 0.87 0.86 
ISIDA 0.88 0.88 1.10 0.93 0.94 1.03 0.92 
Mera, Mersy 0.81 0.81 1.07 0.78 1.37 1.06 1.13 
ChemAxon 0.78 0.75 1.07 0.84 1.09 0.98 0.95 
Inductive 0.87 0.85 1.16 0.92 2.10 1.07 0.99 
Adriana 0.87 0.86 1.02 1.02 0.98 0.98 1.09 
Spectrophores 1.05 1.10 1.35 1.09 1.30 1.21 1.21 
ShapeSignatures 0.93 0.95 1.28 0.97 4.20 1.16 1.07 
QNPR 0.87 0.86 1.00 0.96 1.00 1.04 0.96 

 
SVM with DRAGON descriptors: the SVM was run using a Radial Basis Function 

kernel. The number of retained descriptors after the variable reduction step was 1505. 

1 molecule (1,2,3,4,5,6-hexachlorocyclohexane) comprising 4 records was ignored 
during the development of the model because of failure during the optimization of the 
structure. Thus, 2533 records, comprising 926 unique compounds was used to develop 
the model. 

The plot of calculated versus measured values is reported in Figure 17. 

The statistics for the model are provided in Tables 15, 16 and 17. Considering the 
variability in the experimental conditions – for example, no filter was applied on the 
type of water (fresh/sea water), test location (laboratory or field), life stage of test 
organism – it can be said that the model has satisfactory performance. In fact, from 
the plot of calculated versus measured values, it is clear that for most of the molecules 
the error in prediction is small. However the model cannot be said to predict very well 
all the training molecules: for few of them the error in prediction is quite large. The 
applicability domain of the model was assessed in terms of functional groups in the 
same way as for the models on Daphnia magna. 

 
 
Figure 17: calculated versus measured values for LC50 on Pimephales promelas (96 hours) 
obtained with the SVM model. 
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The dataset was screened against the library of functional groups implemented on 
OCHEM ToxAlerts [Shusko Y. JCIM, in press] and published by Haider[36]. 100 functional 
groups were identified in the training set.  

First, the number of molecules featuring each functional group was calculated. This 
number was correlated with the RMSEC for each functional group. Figure 18 reports a 
bubble plot to highlight the correlation between number of molecules for each 
functional group and the RMSEC. 

The correlation RMSEC-number of compounds for each functional group is similar to 
that obtained on Daphnia magna, i.e. the most common functional groups (right side 
of the plot) possess RMSEC values very close to the RMSEC on the entire dataset 
(0.72). This set of functional groups include aromatic compounds, halides, amines, 
carboxylic acid derivatives and heterocyclic compounds. The RMSEC for heterocyclic 
compounds (0.88) is slightly higher than that on the entire dataset. 7 functional groups 
were identified as being outside the applicability domain of the model (upper left 
corner of the bubble plot), since the RMSEC is larger than 2 times the RMSEC on the 
entire dataset. These outlier functional groups are aminals, hydrazine derivatives, 
nitrates, α-amino acids, phosponic acids, isothiocyanates and phosphinoxides. As 
expected, these functional groups are not well represented in the dataset. Similarly to 
the models on Daphnia magna, some of the functional groups which are better 
predicted are also not well represented. This is the case of enamines, secondary 
aromatic amines, ketene acetal derivatives, carboxylic acid amidines and acyl 
bromides. However, it must be noted that all the molecules belonging to these 5 
functional groups, have also moieties that are well represented in the dataset and this 
can explain the good performance of the model. Table 18 reports the molecules 
belonging to the enamines, secondary aromatic amines, ketene acetal derivatives, 
carboxylic acid amidines and acyl bromides functional groups together with the other 
moieties they possess. 
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Figure 18: bubble plot of number of compounds for each functional group and RMSEC values. 
The size of the bubbles is proportional to the number of molecules. The x axis is an enumerator 
used to sort the bubbles in ascending order of the number of molecules. 

 
 
Table 18: name, structure and complete list of functional groups for the molecules belonging to 
the 5 well predicted but not well represented functional groups. 

Name Structure List of functional groups 

2-(1,3,3-trimethyl-2,3-
dihydro-1H-indol-2-
ylidene)acetaldehyde 

 

aldehydes 
aromatic compounds 
aromatic hydrocarbons 
heterocyclic compounds 
enamines 

N-phenylaniline 

 

aromatic compounds 
aromatic hydrocarbons 
amines 
secondary aromatic amines 

Permethrin 

 

aromatic compounds 
aromatic hydrocarbons 
ethers 
diaryl ethers 
carboxylic acid derivatives 
carboxylic acid esters 
ketene acetal derivatives 

ketene acetal derivatives 

Aminals 

Enamines 

hydrazine derivatives 

Secondary aromatic amines 

Acyl bromides 

isothiocyanates 

nitrates 

Phosphinoxides 

Carboxylic acid amidines 

α-aminoacids 
phosphonic acids 

heterocyclic compounds 

carboxylic acid derivatives 

amines 

alkyl/aryl halides 

aromatic hydrocarbons 

aromatic compounds 
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acetyl bromide 

 

carboxylic acid derivatives 
acyl halides 
acyl bromides 

2-benzyl-4,5-dihydro-
1H-imidazole 

 

aromatic compounds 
aromatic hydrocarbons 
heterocyclic compounds 
carboxylic acid amidines 

 

Some of the molecules belonging to the 7 outlier functional groups also include well 
represented moieties, such as aromatic/heterocyclic rings and carboxylic acid 

derivatives, but still the models’ performance is very poor. Table 19  reports the 
structure, name, list of detected functional groups and LC50 values for the 7 molecules 
belonging to the 7 groups outside the applicability domain. As previously mentioned 
for the models on Daphnia magna, it must be considered that for these functional 
groups only one or two molecule is present. Therefore, general conclusions may be 
misleading. The good or poor performance of the model can be also imputed to 
chance. 
 
 
 
 
 
Table 19: name, structure, complete list of functional groups and average LC50 values (in –
Log(mol/L)) for the molecules belonging to the 7  functional groups outside the applicability 
domain of the model. 

Name Structure List of functional groups LC50 

hexamethylene 
tetramine 

 

heterocyclic compounds 
amines 
tertiary aliphatic amines 
aminals 

0.45 

1,1-
dimethylhydrazine 

 

hydrazine derivatives 3.88 

diethylene diglycol 
dinitrate 

 

ethers 
cations 
anions 
dialkyl ethers 
nitrates 

2.60 

glyphosate 

 

carboxylic acid derivatives 
amines 

secondary aliphatic amines 
phosphonic acid derivatives 
phosphonic acids 
α-amino acids 

4.40 
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glyphosate 
isopropylamine 

 

carboxylic acid derivatives 
amines 

primary aliphatic amines 
secondary  aliphatic amines 
phosphonic acid derivatives 
phosphonic acids 
α-amino acids 

5.00 

allyl isothiocyanato 

 

alkenes 
isothiocyanates 

6.06 

triphenylphosphin
e oxide 

 

aromatic compounds 
aromatic hydrocarbons 

phosphinoxides 

3.71 

 
As for the case of Daphnia magna, in order to analyze whether there is a mechanistic 
reason that can explain the poor performance of the model on the molecules 
belonging to the 7 outlier functional groups, these molecules were screened against 
the structural alerts for aquatic toxicity of the Verhaar scheme[37] using the software 
ToxTree[38]. The results are reported in Table 20. 
 
Table 20: screening of molecules belonging to the outlier functional groups using the Verhaar 
scheme. 

Molecule Functional group Classification 

hexamethylene tetramine aminals not classifiable 
1,1-dimethylhydrazine hydrazine derivatives not classifiable 

diethylene diglycol dinitrate nitrates not classifiable 

glyphosate phosphonic acids 
α-amino acids 

not classifiable 

glyphosate isopropylamine phosphonic acids 
α-amino acids 

not classifiable 

allyl isothiocyanate isothiocyanates unspecific reactivity 

triphenylphosphine oxide phosphinoxides not classifiable 

 
Unfortunately all the molecules but one were fired as not classifiable according to the 
rules of the decision tree. Unlike the outlier molecules for the ANN model on Daphnia 
magna, which belonged to particular chemical classes or had specific major uses, the 
outliers for the model on Pimephales promelas belong to different chemical classes 
and have various uses. In fact these molecules are used as vulcanizing agents 
(hexamethylene tetramine), propellants and stabilizers for plant growth regulators 
(1,1-dimethylhydrazine), plasticizers (diethylene diglycol dinitrate), herbicides and 
pesticides (glyphosate, glyphosate isopropylamine and allyl isothiocyanates) and 
crystallizing agents (triphenylphosphine oxide). In addition, their LC50 values are close 
to the mean LC50 over the entire dataset (4.05), with the exception of hexamethylene 
tetramine, which has a low toxicity, and allyl isothiocyanato, which has a large LC50. 
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The second analysis that was carried out concerns the single molecules, instead of 
functional groups. The correlation between the number of functional groups possessed 
by each compound and the RMSEC for that compound was analyzed. Figure 19 reports 
a bar plot of the RMSEC of each molecule. Also in this case there is no clear correlation. 
Molecules with large RMSEC values are present in all the blocks and also the baseline 
(darker area close to the x axis) seems to follow no general trend. However, the bar 
plot on the average RMSEC values for each block (Figure 20) shows an interesting 
feature. The average RMSEC values follow approximately a parabolic trend, with 
smaller values for blocks 2 to 6. This is reasonable because most of the molecules in 
the dataset have such number of functional groups. Molecules with just one or many 
moieties, instead are less frequent and had therefore less weight in the model 
calibration. However, it must be kept in mind that for this analysis only the number of 
different functional groups within each molecule was considered, irrespective of the 
number of instances.  

This parabolic trend is even more clear reporting the average RMSEC versus the 
number of atoms (Figure 21). Molecules with an average size are more represented in 
the dataset and influenced the development of the model to a major extent. Instead, 
small and very large molecules are less common and had minor weight in the 
calibration of the model. It is not surprising thus that the model has lower 
performance on these molecules which represent more “extreme” situations. An 
analogous situation had already been found by Mannhold et al.[41] when modelling 
LogP on a dataset comprising more than 96000 compounds. 

Again it would have been interesting to study the correlation between the RMSEC of 
each molecule and the overall number of functional groups, which can be calculated as 
per the aforementioned formula. 
 

 
 
Figure 19: RMSEC for each molecule. Colours indicate the number of functional groups per 
molecule according to the legend. 
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Figure 20: bar plot of the average RMSEC for each block of number of functional groups. The 
number of functional groups is indicated on top of the bars. 
 

 
 

Figure 21: bar plot of the average RMSEC for each block of number of atoms. 

  
As for the model on Daphnia magna, also the correlation between the standard 
deviation of the experimental response within each functional group and the RMSEC 
for that functional group was studied.  

Figure 22 reports the RMSEC values versus the standard deviations for each functional 
group. The functional groups identified as being outside the applicability domain of the 
model are highlighted. Also in this case is no clear correlation (R2 = 0.02) and this result 
can be explained again considering that molecules featuring a common functional 
group can be very different in their structure and thus also in their experimental values 
(large standard deviation), but this does not imply that the model should have poor 
performance. Unlike the case of Daphnia magna, where the outlier functional groups 
were scattered along the x axis, in this case the outlier moieties have moderate or zero 
(only one compound features that moiety) standard deviations . 
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In the same way, also the correlation between RMSEC and standard deviation of the 
experimental response for each molecule was studied (Figure 23). A picture similar to 
that found for the model on Daphnia magna was obtained, with many molecules 
having standard deviation equal to 0 (only one experimental value) and some 
compounds lying along a line (red line) indicating a certain degree of correlation. The 
same comments made for the model on Daphnia magna apply here too. 
 

 
 

Figure 22: RMSEC values versus the standard deviation for each functional group. 

 

 
 

Figure 23: RMSEC versus standard deviation for each molecule. 

 
Additionally another set of models was developed using only one experimental value 
for each molecule. Since there was no time to analyze all the experimental values and 
choose the most reliable, the retained measurement was randomly chosen using 
OCHEM. 
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The response was transformed in logarithmic scale of molarity (Log(mol/L)) and the 
same methods and descriptors aforementioned were used. The statistics of the 
developed models are presented in Tables 21, 22 and 23. 
 
Table 21: R2 of the models developed on OCHEM using only one record per molecule. 

 ANN ASNN K-NN SVM FSMLR MLRA PLS 

CDK 0.63 0.65 0.55 0.61 0.55 0.58 0.57 
DRAGON 0.66 0.65 0.50 0.57 0.37 0.56 0.52 
ALogPS,OEstate 0.68 0.67 0.50 0.61 0.55 0.50 0.57 
ISIDA 0.57 0.57 0.40 0.63 0.41 0.41 0.57 
Mera, Mersy 0.60 0.60 0.51 0.60 0.55 0.54 0.20 
ChemAxon 0.60 0.68 0.52 0.65 0.55 0.58 0.57 
Inductive 0.58 0.60 0.50 0.54 0.41 0.40 0.32 
Adriana 0.62 0.66 0.52 0.61 0.50 0.60 0.48 
Spectrophores 0.43 0.47 0.38 0.38 0.31 0.32 0.31 
ShapeSignatures 0.50 0.51 0.42 0.43 0.39 0.35 0.33 
QNPR 0.23 0.28 0.46 0.58 0.46 0.49 0.50 
 
Table 22: Q2 of the models developed on OCHEM using only one record per molecule. 

 ANN ASNN K-NN SVM FSMLR MLRA PLS 

CDK 0.63 0.64 0.55 0.61 0.53 0.58 0.57 
DRAGON 0.66 0.65 0.50 0.54 0.16 0.56 0.47 
ALogPS,OEstate 0.67 0.67 0.48 0.59 0.55 0.50 0.56 
ISIDA 0.57 0.57 0.37 0.63 0.36 0.41 0.56 
Mera, Mersy 0.60 0.59 0.50 0.59 0.55 0.53 0.19 
ChemAxon 0.60 0.68 0.51 0.64 0.54 0.58 0.57 
Inductive 0.58 0.60 0.50 0.54 0.40 0.37 0.25 
Adriana 0.62 0.66 0.52 0.61 0.48 0.60 0.47 
Spectrophores 0.43 0.46 0.38 0.38 0.31 0.32 0.31 
ShapeSignatures 0.50 0.50 0.42 0.43 0.39 0.34 0.33 
QNPR -0.11 -0.07 0.44 0.58 0.46 0.49 0.50 
 
Table 23: RMSEC of the models developed on OCHEM using only one record per molecule. 

 ANN ASNN K-NN SVM FSMLR MLRA PLS 

CDK 0.86 0.84 0.94 0.88 0.96 0.91 0.92 
DRAGON 0.83 0.83 1.00 0.96 1.30 0.94 1.03 
ALogPS,OEstate 0.81 0.81 1.02 0.90 0.95 1.00 0.93 
ISIDA 0.93 0.93 1.12 0.86 1.13 1.09 0.93 
Mera, Mersy 0.89 0.90 1.00 0.90 0.94 0.96 1.26 
ChemAxon 0.89 0.80 0.98 0.84 0.95 0.92 0.93 
Inductive 0.92 0.89 1.00 0.96 1.10 1.12 1.22 
Adriana 0.87 0.82 0.98 0.88 1.01 0.89 1.02 
Spectrophores 1.06 1.04 1.11 1.12 1.17 1.17 1.17 
ShapeSignatures 0.99 0.99 1.07 1.06 1.10 1.14 1.15 
QNPR 1.49 1.46 1.05 0.92 0.46 1.01 0.99 
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Also for the QSAR analysis of LC50 on Pimephales promelas the results using only one 
record for each molecule are worse. The same hypotheses raised for the QSAR analysis 
on Daphnia magna apply here too. The number of molecules for each number of 
replicates (records) is presented in Figure 24. 
 

 
 

Figure 24: number of molecules for each number of replicates (records). 
 

For this dataset most of the molecules have multiple records. The percentage of 
molecules with only one experimental measurement is 28%. 

The best result was provided by an associative neural network using ChemAxon 
descriptors (R2=0.68, Q2=0.68, RMSEC=0.80). However, ten compounds were ignored 
during the development of the model because of errors during the optimization of the 
structure or the calculation of the descriptors. The ANN model with ALogPS and 
OEstate descriptors has a very similar performance (R2=0.68, Q2=0.67, RMSEC=0.81) 
but only one molecule was ignored during the development of the model because of 
failure in the calculation of the descriptors. This model is briefly commented below. 
 

ANN with ALogPS and OEstate descriptors: the neural network was trained with 
1000 iterations, using the SuperSAB training method and 3 neurons in the hidden 
layer. The number of retained descriptors after the variable reduction step used to 
train the network was 142. 

The plot of calculated versus measured values for LC50 is reported in Figure 25. 
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Figure 25: plot of calculated versus measured values for LC50 (96 hours) on Pimephales 
promelas. 

 
The evaluation of the AD in terms of functional groups was undertaken in the same 
fashion as for the previous models. Figure 26 reports a bubble plot for the RMSEC 
versus the number of compounds for each functional group. Again it is possible to 
notice that the well represented functional groups are associated to an RMSEC lower 
than that on the entire dataset (0.81). These functional groups are the same observed 
in the previous models, namely aromatic compounds, alky/aryl halides and carboxylic 
acid derivatives. In addition, also amines are well represented and predicted. 9 
functional groups can be said to be outside the AD of the model since their RMSEC 
values are higher than 2 times the RMSEC on the entire dataset. Some of these 
functional groups were detected also in the previous models as outliers (phosphonic 
acids and their derivatives, aminals, hydrazine derivatives, phosphinoxides, α-amino 
acids and isothiocyanates). For this model, also isocyanates and ketene acetal 
derivatives can be considered as outliers. As for the previous models, all of these 
functional groups are poorly represented in the dataset. Other not well represented 
functional groups are instead well predicted by the model. Some of the molecules 
featuring these groups present also well represented moieties. Again, the good or poor 
performance of the model on such rare functional groups can be due to chance and 
not to a general behavior of the model. 

A bar plot of RMSEC versus number of functional groups for each molecule is reported 
in Figure 27. Also in this case there is no clear correlation between the number of 
functional groups and the RMSEC value for each molecule. Still, it must be kept in mind 
that only the number of different functional groups was considered, regardless of the 
number of instances. 
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Figure 26: bubble plot of number of compounds for each functional group and RMSEC values. 
The size of the bubbles is proportional to the number of molecules. The x axis is an enumerator 
used to sort the bubbles in ascending order of the number of molecules. 

 

 
 
Figure 27: RMSEC for each molecule. Colours indicate the number of functional groups per 
molecule according to the legend. 

 
The developed models have satisfactory statistics, especially considering the variability 
in the experimental conditions. Again, the developed models were compared with 
those implemented in the software T.E.S.T.[40]. The procedure applied by the U.S.-EPA 
for the definition of the dataset on Pimephales promelas was exactly the same as that 
used for Daphnia magna. The final dataset comprised 816 molecules. Several 
approaches were implemented and the different methods were validated using an 
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external set of 164 compounds. The performance on the external set for the various 
approaches are reported in Table 24 along with the statistics of the two best models 
developed with OCHEM. 
 
Table 24: statistics of the models implemented in T.E.S.T. and of the two best models using all 
records and only one record. 

Model Q2ext RMSEP 

Single model 0.63 0.89 
Consensus 0.72 0.78 
FDA 0.67 0.81 
Nearest neighbour 0.64 0.86 
Hierarchical 0.68 0.83 
Group contribution 0.64 0.84 
SVM DRAGON 0.76 0.72 
ANN ALogPS, OEstate 0.67 0.81 

 
The SVM model on DRAGON descriptors using all available records has better 
parameters than all the models implemented in T.E.S.T.. The question regarding the 
influence of using multiple records was not clarified. Assuming that the use of multiple 
records might lead to an overoptimistic estimation of the model predictive power, it 
can be seen that also the best model developed using only 1 record for each molecule 
(ANN with ALogPS and OEstate descriptors) has a Q2 value higher than all the models 
of T.E.S.T., with the exception of the consensus and the hierarchical models. It should 
be kept in mind that the choice of the value to retain was randomly undertaken, while 
for the development of T.E.S.T. models the median was used. The use of the median 
can balance the experimental variance and avoid extreme or incorrect values. 
Therefore, it can be stated that there is still possibility to improve the models 
developed in this study by means of 3 processes: 

1. further filtering of data on the basis of the experimental conditions used to measure 
the property; 

2. not random choice of the value to retain and/or calculation of some average value, 
such as mean or median; 

3. develop consensus models. 
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Chapter 5 

Conclusions 
 
Four databases were identified as source of experimental data on aquatic toxicity. Ad-
hoc designed workflows of KNIME were used to process the databases in order to 
prepare them for the upload on OCHEM. These data, together with few experimental 
measurements already uploaded on OCHEM by other users, were used to derive QSAR 
models for short-term aquatic toxicity. The selected endpoint was the LC50 with a test 
duration of 48 hours for Daphnia magna and 96 hours for Pimephales promelas. 

For both QSAR studies the data have been filtered in order to have a robust and 
consistent dataset. Moreover, few values were corrected or excluded due to errors in 
the data present in the databases. Several different types of descriptors and methods 
were used for the QSAR study. For each endpoint, the best model was chosen on the 
basis of the predictive power, indicated by the Q2 statistics. For both QSAR studies 2 
sets of models were developed: 

1. using all the available records (experimental values); 
2. using only one record for each molecule. 

 
The best QSAR model on Daphnia magna using all records is a neural network based 
on 1413 descriptors of the software DRAGON. The statistics (R2=0.64 , Q2=0.64 and 
RMSEC=1.06) are not very good, but are better than those of the models implemented 
in software T.E.S.T., with the exception of the hierarchical model. The evaluation of the 
applicability domain of the model highlighted 7 functional groups that can be 
considered outside the AD. As expected, these moieties are not well represented in 
training set. These moieties are aldehydes, carboxylic acid secondary amides, 
oxohetarenes, phosphoric acid amides, phosphonic acid derivatives, phosphonic acid 
esters and alkynes. The molecules featuring these groups are or aldehydes, known to 
be reactive species, or substances used as pesticide, herbicide and chemosterilant. 
Thus, they represent a peculiar class of compounds (designed to be active against 
some organisms) that may explain their different toxic behaviour. On the contrary, all 
well represented functional groups (aromatic and heterocyclic compounds as well as 
halides) have an RMSEC lower or equal to that on the entire dataset. No correlation 
was found between the RMSEC of each molecule and the number of different 
functional groups. However, when the average RMSEC is calculated from the 
molecules that have certain number of functional groups, a slight parabolic trend is 
observed, indicating that the error of the model is lower on molecules with an average 
number of moieties. This is due to the fact that most of the molecules used to develop 
the model have 2 to 6 different functional groups. No correlation was also found 
between the RMSEC of each functional group and the standard deviation of the 
experimental responses of the molecules featuring that group. This result was also 
expected since the molecules that feature a common functional group can be very 
different in their structure and possess, therefore, very different LC50 values, but this 
does not necessarily imply that the model should have poor performance. For many 
molecules a slight correlation was found between the RMSEC and the standard 
deviation of the experimental response.  
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The models developed using only one record (randomly chosen) gave worse results. 
Some hypothesis were proposed regarding the quality of the experimental data, the 
sampling step and the cross-validation when the same molecule is provided in 
different forms to explain these results. The best model developed using only one 
record is a SVM based on 83 ChemAxon descriptors (R2=0.55, Q2=0.54 and 
RMSEC=1.22). The evaluation of the AD showed again that the most common 
functional groups (aromatic compounds, heterocyclic compounds and halides) have 
RMSEC values lower or equal to the RMSEC of the model on the entire dataset (1.12). 
Some of the functional groups that can be considered outside the AD are the same 
indentified for the model on all records, namely aldehydes and oxohetarenes, while 
others are different, i.e. thiols, tertiary aliphatic amines, phosphoric acid esters and 
derivatives. Interestingly thiols and arylthiols were very well predicted by the ANN 
model while they are outside the AD of the present model.  

The best QSAR model on Pimephales promelas using all the records is a support vector 
machine with 1505 DRAGON descriptors (R2=0.77, Q2=0.76 and RMSEC=0.72). Also for 
this model the most common functional groups (aromatic compounds, halides, 
amines, carboxylic acid derivatives and heterocyclic compounds) have an RMSEC lower 
or equal to that on the entire dataset. 7 not well represented functional groups 
(aminals, hydrazine derivatives, nitrates, α-amino acids, phosponic acids, 
isothiocyanates and phosphinoxides) associated with large RMSEC values were 
identified as being outside the AD of the model. No clear correlation was observed 
between the RMSEC and the number of functional groups of each molecule because 
molecules associated with large RMSEC values are present in all the blocks. However, 
the bar plot on the average RMSEC values for each block shows that the average 
RMSEC values follow approximately a parabolic trend, with smaller values for blocks 2 
to 6 (corresponding to the most common number of functional groups per molecule in 
the dataset). This trend is even more clear when the correlation between the average 
RMSEC and the number of atoms is analyzed. This is due to the fact that most of the 
molecules in the dataset have an average size and influenced to a major extent the 
development of the model. Again, no correlation was also found between the RMSEC 
of each functional group and the standard deviation of the experimental responses of 
the molecules featuring that group. The same comments made for the model on 
Daphnia magna hold here too. The analysis of the correlation between the RMSEC and 
the standard deviation of the experimental response for each molecule highlighted 
that for many molecules there is a trend. This result was expected since the 
performance of the model cannot be very good if multiple experimental values largely 
disagree (large standard deviation). 

As for the case of Daphnia magna, also the models developed on Pimephales promelas 
using only one records gave worse results than those obtained using multiple records. 
The influence of the presence of multiple experimental measurements was not 
clarified. The best model developed using only one record for molecule (R2=0.67, 
Q2=0.67, RMSEC=0.81) is a ANN based on 142 descriptors (LogPS and OEstate). The 
most common organic functional groups (aromatic rings, halides and amines) are 
associated with RMSEC values lower or equal to the RMSEC on the entire dataset. 9 
functional groups were identified as being outside the AD of the model. These  
moieties include phosphonic acids and their derivatives, aminals, hydrazine 
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derivatives, phosphinoxides, ketene acetal derivatives, α-amino acids, isocyanates and 
isothiocyanates. 

The SVM model with DRAGON descriptors seem to be better than all the models 
implemented in the software T.E.S.T.. If one assumes that the presence of multiple 
values lead to an overestimation of the predictive power, it can be seen that, anyway, 
the ANN model developed using only one record per molecule has also better results 
than the models of T.E.S.T., with the exception of the consensus model. A further 
filtering of the experimental data, combined with the use of some average value or a 
non-random selection of the measurement to retain and the development of 
consensus models may lead to a further improvement of the present models. 
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Additional activities 
 

During my fellowship I participated to the following schools: 

 ECO Summer School 2012, 11-15 June 2012, Verona (Italy); 

 Strasbourg Summer School on Chemoinformatics 2012, 25-29 June 2012, 
Strasbourg (France).  



Project report – ITN-ECO               Matteo Cassotti, Project Leader: Dr. Igor Tetko  49 

 

Acknowledgements 
 

I acknowledge my supervisor, Dr. Igor Tetko, for giving me the possibility to pursue this 

study, guiding me throughout my fellowship and letting me attend the school on 

chemoinformatics in Strasbourg. I also thank my colleagues at the Helmholtz Zentrum 

München, Kamel Mansouri, Ioana Oprisiu, Pantelis Sopasakis, Stefan Brandmaier, Kai 

Zillessen, Ahmed Abdelaziz, Wolfram Teetz, Yurii Sushko, Sergii Novotarskyi, Robert 

Körner and Pankaj Yadav for their help and suggestions. 

I offer thanks to Prof. Roberto Todeschini and Milano Chemometrics and QSAR 

Research Group for the organization of the 2nd ECO Summer School in Verona. 

 

The research leading to these results has received funding from the European 

Community's Seventh Framework Programme (FP7/2007-2013) under Grant 

Agreement n. 238701.  



Project report – ITN-ECO               Matteo Cassotti, Project Leader: Dr. Igor Tetko  50 

 

Bibliography 
 

[1] Newsome L. D., Nabholz J. V. and Kim A). Designing Aquatically Safer Chemicals. 
Book chapter in Designing Safer Chemicals. Green Chemistry for Pollution 
Prevention. DeVito S. C. and Garrett R. L. editors. American Chemical Society, 
Washington, DC, 1996. 

[2] Regulation (EC) No 1907/2006 
[3] Guidance on information requirements and chemical safety assessment. 

Chapter R.6: QSARs and Grouping of Chemicals. ECHA. 
http://echa.europa.eu/documents/10162/13632/information_requirements_r
6_en.pdf 

[4] Sushko I., Novotarskyi S., Körner R., Pandey A. K., Rupp M., Teetz W., 
Brandmaier S., Abdelaziz A., Prokopenko V. V., Tanchuk V. Y., Todeschini R., 
Varnek A., Marcou G., Ertl P., Potemkin V., Grishina M., Gasteiger J., Schwab C., 
Baskin I. I., Palyulin V. A., Radchenko E. V., Welsh W. J., Kholodovych V., 
Chekmarev D., Cherkasov A., Aires-de-Sousa J., Zhang Q. Y., Bender A., Nigsch 
F., Patiny L., Williams A., Tkachenko V., Tetko I. V. Online chemical modeling 
environment (OCHEM): web platform for data storage, model development and 
publishing of chemical information. J Comput Aided Mol Des. 2011; 25(6):533-
54. 

[5] Todeschini R. and Consonni V. Molecular Descriptors for Chemoinformatics. 
Mannhold R., Kubinyi H., Folkers G. editors. WILEY-VCH, 2009. 

[6] http://www.wikipedia.org/ 
[7] http://alttox.org 
[8] Rand G. M., Petrocelli S. R. Fundamentals of aquatic toxicology: Methods and 

applications. Washington: Hemisphere Publishing, 1985. 
[9] Todeschini R. and Consonni V. Handbook of molecular descriptors. Wiley-VCH, 

2000. 
[10] Frank I.E. and Friedman J.H. A statistical view of some chemometrics regression 

tools. Technometrics. 1993; 35, 109-135. 
[11] Todeschini R. Introduzione alla Chemiometria. Edises, 1998.  
[12] Andersson M. A comparison of nine PLS1 algorithms. Journal of Chemometrics, 

2009; 23, 518-529. 
[13] Encyclopedia of Computer Science and Engineering, Wah (editor). Wiley, 2008. 
[14] Tetko I. V. Associative Neural Networks. Neural Processing Letters, 2002, 16, 

187-199. 
[15] Tavella M. Regressione con SVM e Backpropagation. 2005: 

files.mtvl.org/studies/mt_TTR1_SVM_2005.pdf 
[16] ECOTOX: http://cfpub.epa.gov/ecotox/ 
[17] ECETOC: http://www.ecetoc.org/ 
[18] OASIS: http://www.oasis-lmc.org/ 
[19] QSAR Toolbox: www.qsartoolbox.org/ 
[20] Aquatic Japan MoE: http://www.safe.nite.go.jp/english/db.html 
[21] KNIME: http://www.knime.org 
[22] ChemSpider: http://www.chemspider.com/ 
[23] PubChem: http://pubchem.ncbi.nlm.nih.gov/ 

http://echa.europa.eu/documents/10162/13632/information_requirements_r6_en.pdf
http://echa.europa.eu/documents/10162/13632/information_requirements_r6_en.pdf
http://www.wikipedia.org/
http://alttox.org/
http://cfpub.epa.gov/ecotox/
http://www.ecetoc.org/
http://www.oasis-lmc.org/
http://www.qsartoolbox.org/
http://www.safe.nite.go.jp/english/db.html
http://www.knime.org/
http://www.chemspider.com/
http://pubchem.ncbi.nlm.nih.gov/


Project report – ITN-ECO               Matteo Cassotti, Project Leader: Dr. Igor Tetko  51 

 

[24] Steinbeck, C.; Han, Y. Q.; Kuhn, S.; Horlacher, O.; Luttmann, E.; Willighagen, E.L. The 
Chemistry Development Kit (CDK): An open-source Java library for chemo- and 
bioinformatics. Journal of Chemical Information and Computer Sciences. 2003, 43, 493-
500. 

[25] Talete srl (2012). DRAGON (Software for Molecular Descriptor Calculation), 6.0. 
[26] Tetko, I. V.; Gasteiger, J.; Todeschini, R.; Mauri, A.; Livingstone, D.; Ertl, P.; Palyulin, V. 

A.; Radchenko, E. V.; Zefirov, N. S.; Makarenko, A. S.; Tanchuk, V. Y.; Prokopenko, V. V. 
Virtual computational chemistry laboratory - design and description, J. Comput. Aid. 
Mol. Des., 2005, 19, 453-63. 

[27] Kier L.B. and Hall L.H. An Electrotopological-State Index for atoms in molecules. 
Pharm.Res. 1990; 7, 801-807. 

[28] Solov'ev P., Varnek A., Wipff G. Modelling of Ion Complexation and Extraction of 
Organic Molecules Using Substructural Molecular Fragments. Chem. Inf. Comp. Sci., 
2000, 40 , 847-858. 

[29] Potemkin VA, Grishina MA. A new paradigm for pattern recognition of drugs. J Comput 
Aided Mol Des. 2008;22:489–505. 

[30] ChemAxon: http://www.chemaxon.com 
[31] Cherkasov A. Inductive QSAR Descriptors. Distinguishing Compounds with Antibacterial 

Activity by Artificial Neural Networks. Int. J. Mol. Sci. 2005, 6, 63-86. 
[32] ADRIANA.Code: http://www.molecular-networks.com. 
[33] OpenBabel: http://openbabel.org/docs/2.3.1/Fingerprints/spectrophore.html 
[34] Zauhar R. J., Moyna G., Tian L., Li Z., and Welsh W. J.. Shape signatures: a new 

approach to computer-aided ligand- and receptor-based drug design. J. Med. Chem 
2003; 46:5674–5690. 

[35] Thormann M., Vidal D., Almstetter M., Pons M. Nomen Est Omen: Quantitative 
Prediction of Molecular Properties Directly from IUPAC Names. The Open Applied 
Informatics Journal. 2007; 1 (1), 28-32. 

[36] Haider, N., Functionality Pattern Matching as an Efficient Complementary 
Structure/Reaction Search Tool: an Open-Source Approach. Molecules; 2010, 15, 5079-
5092. 

[37] Verhaar H.J.M., Van Leeuven C., Hermens J.L.M.,Classifying Environmental Pollutants. 
1: Structure-Activity Relationships for Prediction of Aquatic Toxicity. Chemosphere, 
1992; 25, 4, 471-491. 

[38] Ideaconsult Ltd. Toxtree (Estimation of Toxic Hazard - A Decision Tree Approach), 2.5.1. 
[39] Kim Y., Choi K., Jung J., Park S., Kim P. G., Park J. Aquatic toxicity of acetaminophen, 

carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential 
ecological risks in Korea. Environ Int.; 2007, 33(3):370-5. 

[40] T.E.S.T. Version 4.0.1. US-EPA. 

[41] Mannhold R., Poda G. I., Ostermann C., Tetko I. V. Calculation of Molecular 
Lipophilicity: State-of-the-Art and Comparison of LogP Methods on More Than 
96,000 Compounds. Journal of Pharmaceutical Sciences; 2009, 98, 861-893. 

 

 

 

 

 

http://www.chemaxon.com/
http://www.molecular-networks.com/
http://openbabel.org/docs/2.3.1/Fingerprints/spectrophore.html

